Novel “Extended Tangential View”: Evaluating the DRUJ Articular Surface and Preventing Intra-articular Screw Breach

Jason S. Klein, MD1, David Chen, MD1, Jorge L. Orbay, MD2, David C. Landy, MD1, Michael R. Mijares, MD1, Patrick W. Owens, MD1

University of Miami1 and The Miami Hand and Upper Extremity Institute2, Miami, Fl.

BACKGROUND

• Understanding distal radius fracture patterns and their articular involvement is essential to guiding treatment pre- and intra-operatively.
• Standard radiographs incompletely evaluate the complex distal radius and distal radio-ulnar joint (DRUJ) articular surfaces.
• Several radiographic views have been described to evaluate for prominent hardware.
• However, very few adequately visualize the sigmoid notch for fracture extension and hardware breach into the DRUJ.

OBJECTIVE

• The objective is to describe a novel radiographic “extended tangential view” to assess for DRUJ screw penetrance and to direct safer screw placement.

METHODS

• Distal radius volar locking plates were applied to 10 cadaver arms
 • 5 arms with / 5 arms without distal ulnar locking screw DRUJ breach
• AP, sunrise, and “extended tangential” views were obtained with fluoroscopy (Fig 3)
• 21 blinded, hand fellowship trained surgeons reviewed the radiographs (representative x-rays seen in Figs. 1 and 2) and answered the following questions:
 • Does the screw directed towards the sigmoid notch breach the cortex?
 • How confident are you in your assessment?
 • Would you reposition the screw based on your above interpretation?
• P-values for the comparison of sensitivities and specificities across views were calculated with generalized linear mixed models assuming a binary distribution and using a logit-link function.

RESULTS

<table>
<thead>
<tr>
<th>Intra-Articular Breach</th>
<th>Views</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>39%</td>
<td>76%</td>
<td></td>
</tr>
<tr>
<td>Extended Tangential</td>
<td>69%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Sunrise</td>
<td>80%</td>
<td>95%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Decision Making</th>
<th>Views</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>65%</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td>Extended Tangential</td>
<td>80%</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>Sunrise</td>
<td>83%</td>
<td>87%</td>
<td></td>
</tr>
</tbody>
</table>

• There was no statistically significant difference in sensitivity or specificity for clinical decision making screw repositioning between the sunrise and extended tangential views (P<0.21 and P=0.17, respectively).
• The sensitivity for judging screw articular breach on the sunrise view was statistically significantly greater than the extended tangential view (P=.04) although there was no difference in specificities (P=.99).
• Both the sunrise and the extended tangential view were superior to the AP view to identify DRUJ breach and to guide clinical decision-making (P<0.01).
• The intraclass correlation coefficients were 0.31, 0.95, 0.99 for the views, respectively.

CONCLUSIONS

• Both the extended tangential and sunrise views performed well in identifying DRUJ screw breach and for directing screw repositioning.
• Based on these results, we recommend that either the sunrise view or the extended tangential view (if not both) should be obtained intra-operatively to guide clinical decision-making.
• The novel extended tangential view should be added to the surgeon’s armamentarium as a valuable tool to:
 • improve sigmoid notch visualization
 • avoid DRUJ screw penetration
 • prevent unnecessary screw repositioning and added OR time
 • detect screw protrusion into the extensor compartments

Fig 1: Fluoroscopic views with DRUJ screw breach
Fig 2: Fluoroscopic views without DRUJ screw breach
Fig 3: Intra-op “Extended Tangential View”

Extended Tangential View	Sunrise View
Extended Tangential View | Sunrise View

The image intensifier is positioned below the arm-table to mimic intra-operative conditions. Images were taken 90° to the arm-table. The wrist is brought up to the image intensifier by flexing the elbow 45° extending the wrist 30°, and placing the forearm in full supination. Titrate for optimal visualization of the sigmoid notch.