BACKGROUND
- ECU tendon has a distinct subsheath
- Separate from the extensor retinaculum
- Subsheath tears and tendon subluxation commonly found in ball-stick and racquet athletes

Current Theories:
- A shallow ulnar groove predisposes certain patients to ECU tendon subluxation
- Deepening the groove has been advocated as an augment to treatment

PURPOSE
- Anatomic dissection to further characterize the anatomy of the ECU subsheath
- Explore the influence of bony morphology of the distal ulna on ECU tendon subluxation

HYPOTHESIS
A deeper ECU groove will have less tendon subluxation and greater tendon stability with and without an intact subsheath

LIMITATIONS
- An analysis of extensor carpi ulnaris (ECU) groove morphology and tendon stability

ECU Subsheath Dimensions
- 12 fresh frozen cadaveric upper extremities
 - 7 Male
 - 5 Female
 - Average Age: 71 (56-81)
 - ECU subsheath exposed.
 - Probe passed inside sheath proximal and distal to identify the isthmus of the subsheath

Bony Morphology
- Renderings of the ECU groove created with a Microscribe 3-D Digitizer
 - Solution Technologies, Inc., Oella, MD
 - Depth of groove calculated

Dynamic Subluxation
- 9 specimens
 - Elbows fixed at 90°
 - 400 gm weight attached in line with pull of the tendon
 - 2mm marker on apex of ulna on radial side
 - Imaged with subsheath intact and then sectioned in: Neutral, Full pronation, Full supination, and Supination/flexion/ulnar deviation
 - Radial/ulnar translation of the tendon measured

Dimensions (Standard Deviation)
- Radial Length: 11.1 mm (2.2)
- Ulnar Length: 10.8 mm (3.0)
- Distal Width: 9.0 mm (0.9)
- Proximal Width: 8.9 mm (1.2)
- Tip of Styloid: 0.5 mm (0.8)
- Distal Ulna Surface: 0.1 mm (2.5)
- Proximal DRUJ: 2.1 mm (1.0)

Effect of groove depth on subluxation using a Spearman’s Correlate:
<table>
<thead>
<tr>
<th>Condition</th>
<th>Max Depth</th>
<th>Median Depth</th>
<th>Mean Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact</td>
<td>0.283 p=0.5</td>
<td>0.183 p=0.6</td>
<td>0.133 p=0.7</td>
</tr>
<tr>
<td>Sectioned</td>
<td>0.283 p=0.5</td>
<td>0.183 p=0.6</td>
<td>0.183 p=0.6</td>
</tr>
<tr>
<td>Δ Travel</td>
<td>0.217 p=0.6</td>
<td>0.2 p=0.6</td>
<td>0.2 p=0.6</td>
</tr>
</tbody>
</table>

CONCLUSIONS
The depth of the ECU groove does not independently significantly contribute to ECU tendon stability

Funding for this project was supplied by a grant from the Orthopaedic Science Research Foundation.

*ECU tendon has a distinct subsheath.
Subsheath tears and tendon subluxation commonly found in ball-stick and racquet athletes.*

Elizabeth R. Dennis, MS, Joseph M. Lombardi, MD, James Wilkerson, MD and Melvin P. Rosenwasser, MD
Columbia University Medical Center, New York, NY – itc@columbia.edu

Disclosures: MPR Biomet & Stryker

Funding for this project was supplied by a grant from the Orthopaedic Science Research Foundation.